hadoop 数据分析,hadoop数据分析概念?

用户投稿 96 0

关于“hadoop_php数据分析”的问题,小编就整理了【4】个相关介绍“hadoop_php数据分析”的解答:

hadoop数据分析概念?

基于mapreduce的原理,通过map后分到多个服务器执行,得到最终结果

hadoop和mangoDb用作大数据分析哪个更好?

1,hadoop是大数据分析的完整生态系统,从数据采集,存储,分析,转运,再到页面展示,构成了整个流程采集可以用flume,存储用hbase,hdfs,mangodb就相当于hbase,分析用Mapreduce自己写算法,还有hive做数据仓库,pig做数据流处理,转储方面有sqoop,可以将hdfs中的数据转换存储到mysql,oracle等传统数据库,这就构成了一整套大数据分析的整个流程

2,mangodb只是充当存储功能,是一款nosql数据库,支持以json的格式存储

3,所以从功能上来讲,hadoop和mangodb是不一样的,hadoop中可以用mangodb替换hbase,但是mangodb不能替换hadoop,一个是完整的生态系统,一个是数据库,两个不一样的概念

4,至于选择用mangodb还是hbase,各有优劣,不过使用较多的还是hbase,mangodb社区没有hbase活跃,所以还是hbase吧

Hadoop生态系统及各模块的功能?

HDFS 是 Hadoop 生态圈中提供分布式存储支持的系统,上层的很多计算框架(Hbase、Spark 等)都依赖于 HDFS 存储。

2. MapReduce(分布式计算模型)离线计算

何为离线计算,其实就是非实时计算。

3. Yarn(分布式资源管理器)

Yarn 的出现主要就是为了解决原始 Hadoop 扩展性较差、不支持多种计算模型的问题。

4. Spark(内存计算)

Spark 提供了内存中的分布式计算能力,相比传统的 MapReduce 大数据分析效率更高、运行速度更快。

5. HBase(分布式列存储数据库)

Hbase继承了列存储的特性,它非常适合需对数据进行随机读、写操作。 其次,Hbase构建在HDFS之上,其内部管理的文件全部存储在HDFS中。这使它具有高度容错性和可扩展性,并支持Hadoop mapreduce程序设计模型。

6. Hive(数据仓库)

7. Oozie(工作流调度器)

Oozie 是一个基于工作流引擎的调度器,它其实就是一个运行在 Java Servlet 容器(如 Tomcat)中的 Javas Web 应用,你可以在它上面运行 Hadoop 的 Map Reduce 和 Pig 等任务,。

什么是hadoop?

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。

Hadoop是Apache基金会开发的分布式系统基础架构

Hadoop主要被用来解决海量数据的存储和海量数据的分析计算

广义上来说,Hadoop通常是指一个更广泛的概念----Hadoop生态圈

到此,以上就是小编对于“hadoop_php数据分析”的问题就介绍到这了,希望介绍关于“hadoop_php数据分析”的【4】点解答对大家有用。

抱歉,评论功能暂时关闭!